Quarry Problem

Parameters

```
Truck indices (j): 0 = \text{large truck}, 1 = \text{small truck}

Shovel indices (i): Shovels numbered 0, 1, ..., n - 1

\{t_{L_j}\} = \text{Load time for truck of size } j \ (j = 0, 1)

\{t_{C_j}\} = \text{Crush time for truck of size } j \ (j = 0, 1)

t_{C_j} = \text{travel time from shovel to crusher for truck of type } j \ (j = 0, 1)

t_{S_j} = \text{travel time from crusher to shovel for truck of type } j \ (j = 0, 1)

t_j = \text{travel time from crusher to shovel for truck of type } j \ (j = 0, 1)
```

State Variables

```
s_q[i] = fifo container of trucks waiting in queue at shovel i. The contents of the queue are the index of the truck sizes (0 or 1).
```

 $S_i =$ Number of available shovels at shovel *i*.

 $c_q[j] =$ fifo container of trucks of type j waiting at crusher. The contents are the shovel index for that truck.

C = Number of available crushers (0 or 1).

Initial Values

Containers are all empty; C=1, $S_i=1$ for i=0, 1, n-1. There should be an Arrive Shovel event scheduled on the event list by the Run event for each truck at each shovel.

Event Graph

Initialization

